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Synopsis 
Theoretical and practical aspects of handling atomic anisotropic displacement parameters 

are discussed. 

Abstract 
A number of conventions for the representation of atomic anisotropic displacements are 

used in the literature and in crystallographic programs. Here we review the commonly 

used conventions, with a special emphasis on their application in macromolecular 

crystallography. We then describe a new software toolbox for the handling of the various 

representations of atomic anisotropic displacement parameters and their interconversion. 

All algorithms are integrated into the freely available Computational Crystallography 

Toolbox. 

1. Introduction 
When high-resolution diffraction data are available, crystal structures are often modeled 

using atomic anisotropic displacement parameters (ADPs) to describe thermal motion and 

possible static displacive disorder. In the field of small-molecule crystallography ADPs 

have been routinely used for decades (Trueblood et al., 1996). Until recently, the use of 

ADPs in the refinement of macromolecular structures has been rare. However, due to 

many improvements in data collection technology, high-resolution data that enable the 

refinement of ADPs are becoming available for macromolecules at an increased rate. 

This is reflected by a rapid growth in the number of structures with ADPs deposited in 

the Protein Data Bank (PDB) (Berman et al., 2000) (Fig. 1). 



 

As we show in section 2, a number of conventions for the representation of ADPs are 

currently in use. A comprehensive overview is given by Trueblood et al. (1996). These 

different conventions pose a significant potential for confusion. For example, the ADPs 

found in files that follow the PDB format (http://www.rcsb.org/pdb/info.html) follow a 

different convention than the ADPs found in files that follow the mmCIF format 

(http://pdb.rutgers.edu/mmcif/). If this is not taken into account, there exists a possibility 

that the ADPs can be misinterpreted, leading to incorrect analysis of a structure. 

Therefore a library for the conversion between the different representations is a valuable 

tool. We have implemented such a library by adding the ADP toolbox (adptbx) to the 

Computational Crystallography toolbox (cctbx) (Grosse-Kunstleve et al., 2002). In 

addition to the conversions the library facilitates the computation of Debye-Waller 

factors, the handling of symmetry restrictions, and the determination of the eigenvalues 

and eigenvectors of anisotropic displacement ellipsoids. The cctbx is organized as a 

freely available Open Source library of reusable, object-oriented software components for 

crystallographic computations. 

 

In general, the nomenclature that was adopted for the implementation of the adptbx 

follows the recommendations of the IUCr Subcommittee on Atomic Displacement 

Parameter Nomenclature (Trueblood et al., 1996). In the following sections we will 

review the commonly used conventions for ADPs in the literature, computer programs 

and databases. This is followed by a description of the adptbx. Further documentation is 

available online (http://cctbx.sourceforge.net/). 

2. Commonly used conventions for the representation of 
atomic anisotropic displacement parameters 
The mean-square displacements that define the probability density functions of atomic 

displacements are commonly parameterized as a trivariate Gaussian. The effect of the 

atomic displacements enters into the structure factor calculation as the Debye-Waller 

factor T(h), where h is the Miller index (given as a column vector) of a Bragg reflection. 

The fundamental expression for T(h) is (e.g. Trueblood et al., 1996) 
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where u is a Gaussian mean-square displacement matrix. Eq. 1 takes on different forms 

depending on the basis vectors to which the diffraction and displacement vectors are 

referred. With a few exceptions (e.g. Bricogne 2001, section 1.3.4), diffraction vectors 

are almost universally referred to the basis of the crystallographic reciprocal lattice. This 

is also the convention assumed in the rest of this paper. If the Gaussian mean-square 

displacement matrix is referred to the same basis, Eq. (1) takes on the form 

 

)2exp()( *2 hUhhT tπ−= ,  (Eq. 2) 

 

where ht is the transposed of h (i.e. a row vector), and U* is a symmetric, contravariant 

second rank tensor (Trueblood et al., 1996), typically represented as a symmetric 3x3 

matrix of real numbers. This definition of U* is equivalent to that of Giacovazzo (1992). 

(Bricogne (2001) uses the notation Q for the same tensor.) Obviously, the representation 

of ADPs with respect to the reciprocal lattice can be used directly in the structure factor 

calculation. It is also the most suitable representation for establishing compatibility with 

the site-symmetry for special positions (see section 3.3). 

 

All other commonly used conventions for the representations of ADPs are most 

conveniently defined through tensor transformations. Section 2.E of Giacovazzo (1992) 

gives a comprehensive collection of Transformations of crystallographic quantities in 

rectilinear spaces, including the transformation of “quadratic forms” (i.e. second rank 

tensors). For example, let A be an orthogonalization matrix that transforms the fractional 

coordinates xfrac with respect to a crystallographic basis system to coordinates xcart with 

respect to a Cartesian basis system. Application of the transformation rules listed by 

Giacovazzo (1992) leads to 

 

 ,  (Eq. 3a) t
cart AAUU *=
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cart AUAU )( 11* −−= ,  (Eq. 3b) 

 

where At is the transposed of A, A-1 is the inverse of A, and Ucart is the anisotropic 

displacement tensor with respect to the Cartesian basis. (It should be noted that Eq. 3 is 

using matrix notation. In contrast, Trueblood et al. (1996) use tensor notation. Compare 

Eq. (3a) in this paper with the similar Eq. (2.1.44) of Trueblood et al. (1996); see also 

Nye (1992), ch. IX.) 

 

The ADPs found in files that follow the PDB format (ANISOU cards) define the elements 

of Ucart. The representation of ADPs with respect to a Cartesian basis system is useful 

because the eigenvalues of Ucart are directly equivalent to the mean-square atomic 

displacements in the principal directions of the corresponding ellipsoid (see section 3.4). 

In addition, the Cartesian basis system is typically the most useful for generating 

graphical representations of such ellipsoids (as performed, e.g., by the ORTEP program 

(Burnett & Johnson, 1996)). 

 

In small-molecule crystallography, a third basis system is used almost universally for the 

representation of ADPs: the basis is formed by unit vectors that are parallel to the basis 

vectors of the crystallographic reciprocal lattice. To our knowledge, this ad hoc basis 

system is only used for the representation of ADPs. It is connected to the reciprocal 

lattice by the transformation matrix 
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where the diagonal elements of the matrix are the lengths of the basis vectors of the 

reciprocal lattice. The corresponding transformation laws for anisotropic displacement 

tensors are given by 

 
t

uvrs NUNU )( 1*1 −−= ,  (Eq. 5a) 
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t
uvrs NNUU =* ,  (Eq. 5b) 

 

where Uuvrs is a tensor with respect to the “unit vectors parallel to the basis vectors of 

reciprocal space.” This convention for ADPs was adopted in the definitions of both the 

CIF (http://www.iucr.org/iucr-top/cif/) and the mmCIF dictionaries, where they are 

referred to as aniso_U. It also is the convention used by the SHELX programs (Sheldrick 

& Schneider, 1997), the XTAL suite (Hall et al., 2000), MOPRO (Guillot et al., 2001), 

and probably many other programs and databases. Uuvrs has the advantage that the 

elements of the tensor are quantitatively similar to the mean-square displacements. For 

unit cells with orthogonal basis vectors Uuvrs is exactly equivalent to Ucart. At the same 

time the computation of the Debye-Waller factor is relatively simple because N is a 

diagonal matrix. Substituting Eq. (5b) into Eq. (2) results in the familiar expression 

 

)),222

)())())((2exp()(

23
**

13
**

12
**

33
2*2

22
2*2

11
2*22

UcklbUchlaUbhka

UclUbkUahhklT

+++

++−= π
  (Eq. 6) 

 

where Uij is the element in the ith row and the jth column of the tensor Uuvrs. This 

equation is found in many program descriptions and in the definition of the CIF 

dictionaries. Unfortunately, for unit cells with angles other than 90˚ the mean-square 

displacements are convoluted with the metric of the crystallographic basis. To determine 

the principal mean-square displacements for the general case it is therefore necessary to 

convert Uuvrs to Ucart. The conversion laws are easily obtained by combining Eqs. (3) and 

(5). 

  

For completeness we mention that Giacovazzo (1992) defines “U” with respect to the 

crystallographic basis. This leads to the relation U = G U* G, where G is the metrical 

matrix of the crystallographic basis. However, we are not aware of any program or 

database that uses this convention for “U”. Therefore support for ADPs with respect to 

crystallographic bases is not included in the adptbx. 
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The representations of ADPs reviewed so far are all “pure” in the sense that they directly 

define a physical quantity, the mean-square displacement of an atom. The differences are 

exclusively in the choice of the basis system to which the ADPs refer. Unfortunately, 

these different representations are also sometimes convoluted with factors of π. The first 

example is the definition 

 
*22 Uπβ = .  (Eq. 7) 

 

This definition is found throughout the literature. It is obviously motivated by the desire 

to optimize the computation of the Debye-Waller factor according to Eq. (2). β are also 

used by the SIR program (Altomare et al., 2000). The second example is the definition 

 

UB 28π= ,  (Eq. 8) 

 

which is used in the definition of the CIF and mmCIF dictionaries. The factor 8π2 

originates from the expression for the Debye-Waller factor for isotropic displacement 

parameters which is usually (e.g. Trueblood et al., 1996) defined as 

 

( )sin8exp()( 22 λθπ UhT −= ) ,  (Eq. 9) 

 

where ( 2sin λθ )  is a commonly used measure for the spacing between lattice planes 

perpendicular to the diffraction vector h. Presumably the definition of Eq. (8) is 

transferred from isotropic to anisotropic displacement parameters to make them 

“comparable.” However, this is highly artificial. Therefore the use of B is explicitly 

discouraged by Trueblood et al. (1996) and in the definitions of the CIF and mmCIF 

dictionaries. However, to be able to process input from sources that use B, support for 

this is included in the adptbx. 
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3. Overview of the adptbx and other related parts of the 
cctbx 

3.1. Conversions 

The adptbx supports the simple conversions between both isotropic and anisotropic “U” 

and “B” (Eq. 8), independently of the basis system that is used. Further supported are all 

possible conversions between U*, Ucart, Uuvrs, and β. This results in a total of 12 

conversion functions. However, only the conversions according to Eqs. (3) and (5) are 

generic implementations. The other conversions are implemented as nested function calls 

of the generic conversions. This minimizes the amount of source code, and the relations 

between the different representations of the ADPs are also easy to follow. It should also 

be noted that modern optimizing compilers generate code that is as efficient at runtime as 

manually coded specific conversion functions. 

 

Eight additional functions are provided for the conversions between the anisotropic Ucart, 

U*, Uuvrs, and β and the equivalent isotropic Uiso. The isotropic equivalent of the 

anisotropic displacement tensor is defined as the mean of the mean-square displacements 

in the principal directions of the anisotropic displacement ellipsoid, which is equivalent 

to the mean of the eigenvalues. In the Cartesian basis system the trace of the Ucart tensor 

is equivalent to the sum of the eigenvalues (see, e.g. p. 188 in Giacovazzo, 1992). 

Therefore the equivalent Uiso is defined by the simple relation 

 

)trace(3
1

cartiso UU = .  (Eq. 10) 

 

The conversion from Uiso to Ucart is equally straightforward: 
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The conversions between U*, Uuvrs, and β and the equivalent Uiso are implemented as the 

combination of conversions between, e.g., U* and Ucart, and Ucart and Uiso. In this way the 

complicated expressions for equivalent Uiso that are often found in the literature are 

avoided. 

3.2. Computation of the Debye-Waller factor 

Functions are provided for the computation of the Debye-Waller factor according to Eq. 

(1) given U*, β, Ucart, Uuvrs, Uiso and Biso. Only two functions are generic implementations 

(U*, Biso). The others are implemented as a conversion followed by a call of the suitable 

generic function. 

3.3. Handling of symmetry restrictions for special positions 

For atoms on special positions, the SiteSymmetry class (Grosse-Kunstleve & Adams, 

2002) in the Space Group Toolbox of the cctbx was extended to test whether a given 

anisotropic tensor U* is compatible with the site symmetry. The anisotropic displacement 

ellipsoid must remain invariant under the application of each of the symmetry operations 

of the site-symmetry group. This leads to the condition 

 
tRRUU ** = ,  (Eq. 11) 

 

where R is the rotation part of a given symmetry operation (see, e.g., Giacovazzo, 1992). 

A second function that was added to the SiteSymmetry class applies Wigner’s theorem 

(Giacovazzo, 1992, p. 189) to derive a tensor 

 

∑
=

=
n

s

t
ssninv RURU

1

*1* ,  (Eq. 11) 

 

that is invariant under the n operations of the site-symmetry group even if U* is not. This 

is useful to compensate for rounding errors due to limited input precision, and possibly to 

compensate for approximations and rounding errors in refinement algorithms. 
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3.4. Determination of eigenvalues 

The eigenvalues of Ucart are directly equivalent to the mean-square atomic displacements 

in the principal directions of the anisotropic displacement ellipsoid. Since the anisotropic 

displacement tensor is a symmetric matrix, all eigenvalues are real. The eigenvalues λ are 

determined as the three real roots of the cubic equation 

                

0=− IUcart λ ,  (Eq. 12) 

 

where I is the identity matrix. The solutions are obtained analytically using Cardan's 

formula (see, e.g., Spiegel & Liu, 1998). 

 

If any of the three eigenvalues is less than or equal to zero, the Ucart tensor is not positive 

definite and Ucart cannot be represented as an ellipsoid. Tests for this condition are 

included in the adptbx. 

3.5. Determination of eigenvectors 

The eigenvectors of Ucart define the principal directions of the anisotropic displacement 

ellipsoid. Since the anisotropic displacement tensor is a symmetric matrix, the 

eigenvectors can be chosen orthonormal. The eigenvectors are determined using a simple 

method of successive approximations specific for 3x3 matrices as outlined in Nye (1992), 

pp.165-168. 

3.6. Software technology used 

The adptbx is implemented in ISO C++ (International Standardization Organization et al., 

1998). This programming language supports object-oriented design, namespaces, 

exception handling, and parameterization of types (templates). These features facilitate 

the design of libraries that are reusable and maintainable. For example, all functions in 

the cctbx are parameterized (templated) by the floating-point type. It is therefore possible 

to choose between single precision and double precision representations of ADPs. It is 

also possible to use multiple floating point precisions simultaneously in the same 
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program. Importantly, this is achieved without duplicating source code, and without 

impacting the runtime performance. 

 

The adptbx may be used as a pure C++ library. However, for maximum flexibility, 

bindings to the high-level Python scripting language are provided. The benefits of this 

tight combination of a statically typed compiled language (C++) with a dynamically 

typed interpreted language (Python) are discussed in depth by Grosse-Kunstleve et al. 

(2002). A simple example script (analyze_adp.py) that demonstrates the use of the adptbx 

is provided online in the examples directory of the cctbx (http://cctbx.sourceforge.net/). 

4. Conclusion 
We hope that the discussion of commonly used conventions for the representation of 

ADPs in section 2 is a useful reference for crystallographers, in particular 

macromolecular crystallographers, who are unavoidably presented with at least two 

different representations: the PDB convention (Ucart) and the mmCIF convention (Uuvrs).  

 

We have introduced practical tools for the handling of ADPs, which are accessible 

through a scripting language (Python). This language was designed specifically for 

teaching programming concepts and the tools are therefore very approachable. Their 

integration into the cctbx creates a powerful resource for handling the diverse data 

representations used by crystallographic software. At the same time, their modular, 

highly reusable design, in combination with an Open Source license, makes them ideal 

for inclusion into large, integrated software systems. 
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Figure 1: Histogram of structures that were deposited in the Protein Data Bank (PDB) 
with ANISOU cards, grouped by year, based on the PDB holdings on 16-Oct-2001. The 
dates used for the histogram are the days of deposition as found on the PDB HEADER 
card. The total number of structures with ANISOU cards is 306. 237 structures were 
refined with SHELX (white bars) (Sheldrick & Schneider, 1997), 64 structures with 
REFMAC (gray bars) (Murshudov et al., 1997), and five structures with three other 
programs (black bars) (see the references archived in the PDB under the access codes 
7bna, 1etl, 1etm, 1etn, and 1ejg). 
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